Original Russian Text Copyright © 2003 by V. Shchepin, Kalyuzhnyi, R. Shchepin, Vakhrin.

Reaction of Zinc Enolates Derived from Substituted 2,2-Dibromobutyrophenones with Ethyl 5,5-Dimethyl-2-oxo-2,5-dihydrofuran-3-carboxylate

V. V. Shchepin, M. M. Kalyuzhnyi, R. V. Shchepin, and M. I. Vakhrin

Perm State University, Perm, Russia

Received April 18, 2001

Abstract—Zinc enolates derived from substituted 2,2-dibromobutyrophenones react with ethyl 5,5-dimethyl-2-oxo-2,5-dihydrofuran-3-carboxylate to give ethyl 6-aroyl-6-ethyl-4,4-dimethyl-2-oxo-3-oxabicyclo[3.1.0]-hexane-1-carboxylates mostly as a single geometric isomer.

Earlier we found that zinc enolates derived from α,α -dibromoketones very actively react by the carbonyl group of aldehydes and ketones to produce compounds of various classes, such as α,β -unsaturated ketones, α,β -epoxyketones, and β -diketones [1, 2].

In the present work we studied synthetic potential of these zinc enolates in reactions with compounds with activated C=C bonds on an example of ethyl 5,5-dimethyl-2-oxo-2,5-dihydrofuran-3-carb-

oxylate. It was found that zinc enolates **IIa–IIh** obtained from *para*-substituted 2,2-dibromobutyrophenones **Ia–Ih** add to the double bond of compound **III**.

Under the reaction conditions, intermediates **IVa–IVh** undergo cyclization to give bicyclic products, ethyl 6-aroyl-6-ethyl-4,4-dimethyl-2-oxo-3-oxabicyclo[3.1.0]hexane-1-carboxylates **Va–Vh** in high yields (see table).

$$EtCBr_{2}COR \xrightarrow{Zn} \begin{bmatrix} Et & OZnBr \\ Br & C = C & R \end{bmatrix}$$

$$IIa-IIh$$

$$III + Me \xrightarrow{OOOEt} OOOEt$$

$$Me \xrightarrow{H} COOEt$$

$$Me \xrightarrow{OOOEt} Me \xrightarrow{H} COOEt$$

$$Me \xrightarrow{IVa-IVh} Va-Vh$$

 $R = Ph (a), 4-MeC_6H_4 (b), 4-EtC_6H_4 (c), 4-t-BuC_6H_4 (d), 4-FC_6H_4 (e), 4-ClC_6H_4 (f), 4-BrC_6H_4 (g), 4-C_6H_5C_6H_4 (h).$

The structure of compounds **Va–Vh** was confirmed by the elemental analyses and ¹H NMR and IR spectra. The IR spectra contain typical absorption bands of the aroyl (1680–1690 cm⁻¹), ethoxycarbonyl (1730–1740 cm⁻¹), and lactone carbonyls (1785–1790 cm⁻¹). The ¹H NMR spectra show signals of the methine (2.48–2.56 and 4.29–4.35 ppm), ethoxycarbonyl

(1.28–1.36 and 1.60–2.30 ppm), and CMe₂ protons (0.82–0.90 and 1.33–1.47 ppm). The ¹H NMR data suggest that compounds **Va–Ve** and **Vg** are formed as single geometric isomers. At the same time, the spectra of compounds **Vf** and **Vh** display, in addition to signals belonging to the major geometric isomer, a singlet signal at 3.80–3.83 ppm (other signals are hard

Yields, constants, ¹H NMR spectra, and elemental analyses of ethyl 6-aroyl-6-ethyl-4,4-dimethyl-2-oxo-3-oxabicyclo-[3.1.0]hexane-1-carboxylates

Comp.	Yield,	mp, °C	¹ H NMR spectrum, δ, ppm					Found, %		Formula	Calculated,	
			СН	COOEt	Et	CMe ₂	COAr	С	Н		С	Н
Va	67	104– 105	2.48 s	4.32 q, 1.33 t	1.83 q, 0.89 t	1.40 s, 1.38 s	7.87–8.15 m, 7.25–7.56 m	68.90	6.63	C ₁₉ H ₂₂ O ₅	69.08	6.71
Vb	85	159– 160	2.53 s	4.29 q, 1.30 t	1.60– 2.30 m, 0.82 t	1.40 s, 1.33 s	7.90 d, 7.18 d, 2.30 s (4-MeC ₆ H ₄)	69.68	6.95	$C_{20}H_{24}O_5$	69.75	7.02
Vc	80	97–98	2.51 s	4.34 q, 1.32 t	1.60– 2.30 m, 0.89 t	1.39 s, 1.33 s	7.97 d, 7.23 d, 2.64 q, 1.20 t (4-EtC ₆ H ₄)	70.28	7.25	$C_{21}H_{26}O_5$	70.37	7.31
Vd	74	110– 111	2.50 s	4.32 q, 1.32 t	1.82 q, 0.88 t,	1.38 s, 1.35 s	8.03 d, 7.44 d, 1.23 s (4-t-BuC ₆ H ₄)	71.33	7.76	$C_{23}H_{30}O_5$	71.48	7.82
Ve	71	106– 107	2.56 s	4.35 q, 1.36 t	1.90 q, 0.90 t,	1.47 s, 1.42 s	8.00–8.30 m, 6.90–7.30 m (4-FC ₆ H ₄)	65.33	7.99	C ₁₉ H ₂₁ FO ₅	65.51	6.08
Vf	72	140– 141	2.51 s	4.33 q, 1.33 t	1.84 q, 0.85 t,	1.42 s, 1.38 s	8.07 d, 7.40 d (4-ClC ₆ H ₄)	62.40	5.71	$C_{19}H_{21}ClO_5$	62.55	5.80
Vg	76	146– 147	2.50 s	4.30 q, 1.28 t	1.80 q, 0.83 t,	1.37 s, 1.34 s	7.92 d, 7.57 d (4-BrC ₆ H ₄)	55.59	5.07	$C_{19}H_{21}BrO_5$	55.76	5.17
Vh	78	173– 174	2.53 s	4.31 q, 1.33 t	1.90 q, 0.88 t,	1.40 s, 1.37 s	8.17 d, 7.25– 7.70 m (4-C ₆ H ₅ C ₆ H ₄)	73.12	6.32	C ₂₅ H ₂₆ O ₅	73.87	6.45

to identify), which indicates that the other geometric isomer is present in smaller amounts. The ratio between the major and minor isomers is ca. 90:10%. To summarize, assuming that compounds **Va–Vh** are formed as the least strained bicycles, the above structure seems to be the most probable.

EXPERIMENTAL

The IR spectra were taken on a UR-20 spectrophotometer for pure compounds. The ¹H NMR spectra were measured for CDCl₃ solutions on an RYa-2310 instrument (60 MHz) against internal HMDS.

Ethyl 5,5-dimethyl-2-oxo-2,5-dihydrofuran-3-carboxylate was prepared by the procedure described in [3].

Ethyl 6-aroyl-6-ethyl-4,4-dimethyl-3-oxabicyclo[3.1.0]hexane-1-carboxylates Va-Vh. To 5 g of zinc in the form of small chips in 10 ml of ether and 10 ml of ethyl acetate, 0.015 mol of compound Ia-Ih

in 10 ml of ethyl acetate was added dropwise with stirring. The mixture was heated to initiate a self-sustaining reaction. After the reaction had been complete, the mixture was heated for 15 min on a water bath, cooled, and decanted from zinc into another flask. Then 0.01 mol of compound III was added, the mixture was heated for 30 min on a water bath, cooled, hydrolyzed with 5% HCl, and extracted with ether. The extract was dried with Na₂SO₄, the solvents were distilled off, and the products were recrystallized from methanol.

REFERENCES

- Shchepin, V.V., Russkikh, N.Yu., and Gladkova, G. E., Zh. Org. Khim., 1991, vol. 27, no. 9, p. 1849.
- 2. Shchepin, V.V., Gladkova, G.E., and Russkikh, N.Yu., *Zh. Org. Khim.*, 1992, vol. 28, no. 6, p. 1156.
- 3. Shchepin, V.V., Rodygin, A.S., and Balandina, M.I., *Zh. Org. Khim.*, 1991, vol. 27, no. 10, p. 2035.